Thermal activation and photoactivation of visual pigments.
نویسندگان
چکیده
A visual pigment molecule in a retinal photoreceptor cell can be activated not only by absorption of a photon but also "spontaneously" by thermal energy. Current estimates of the activation energies for these two processes in vertebrate rod and cone pigments are on the order of 40-50 kcal/mol for activation by light and 20-25 kcal/mol for activation by heat, which has forced the conclusion that the two follow quite different molecular routes. It is shown here that the latter estimates, derived from the temperature dependence of the rate of pigment-initiated "dark events" in rods, depend on the unrealistic assumption that thermal activation of a complex molecule like rhodopsin (or even its 11-cis retinaldehyde chromophore) happens through a simple process, somewhat like the collision of gas molecules. When the internal energy present in the many vibrational modes of the molecule is taken into account, the thermal energy distribution of the molecules cannot be described by Boltzmann statistics, and conventional Arrhenius analysis gives incorrect estimates for the energy barrier. When the Boltzmann distribution is replaced by one derived by Hinshelwood for complex molecules with many vibrational modes, the same experimental data become consistent with thermal activation energies that are close to or even equal to the photoactivation energies. Thus activation by light and by heat may in fact follow the same molecular route, starting with 11-cis to all-trans isomerization of the chromophore in the native (resting) configuration of the opsin. Most importantly, the same model correctly predicts the empirical correlation between the wavelength of maximum absorbance and the rate of thermal activation in the whole set of visual pigments studied.
منابع مشابه
Activation of visual pigments by light and heat.
Vision begins with photoisomerization of visual pigments. Thermal energy can complement photon energy to drive photoisomerization, but it also triggers spontaneous pigment activation as noise that interferes with light detection. For half a century, the mechanism underlying this dark noise has remained controversial. We report here a quantitative relation between a pigment's photoactivation ene...
متن کاملVertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base and a counterion switch during photoactivation.
For visual pigments, a covalent bond between the ligand (11-cis-retinal) and receptor (opsin) is crucial to spectral tuning and photoactivation. All photoreceptors have retinal bound via a Schiff base (SB) linkage, but only UV-sensitive cone pigments have this moiety unprotonated in the dark. We investigated the dynamics of mouse UV (MUV) photoactivation, focusing on SB protonation and the func...
متن کاملThe thermal contribution to photoactivation in A2 visual pigments studied by temperature effects on spectral properties.
Effects of temperature on the spectral properties of visual pigments were measured in the physiological range (5-28 degrees C) in photoreceptor cells of bullfrog (Rana catesbeiana) and crucian carp (Carassius carassius). Absorbance spectra recorded by microspectrophotometry (MSP) in single cells and sensitivity spectra recorded by electroretinography (ERG) across the isolated retina were combin...
متن کاملRhodopsin: a prototypical G protein-coupled receptor.
A variety of spectroscopic and biochemical studies of recombinant site-directed mutants of rhodopsin and related visual pigments have been reported over the past 9 years. These studies have elucidated key structural elements common to visual pigments. In addition, systematic analysis of the chromophore-binding pocket in rhodopsin and cone pigments has led to an improved understanding of the mec...
متن کاملOn the relation between the photoactivation energy and the absorbance spectrum of visual pigments
We relate the collected experimental data on the minimum energy for photoactivation (E(a)) to the wavelengths of peak absorbance (lambda(max)) of 12 visual pigments. The E(a) values have been determined from the temperature-dependence of spectral sensitivity in the long-wavelength range. As shown previously, the simple physical idea E(a) =const. x (1/lambda(max)) (here termed the Stiles-Lewis-B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 86 6 شماره
صفحات -
تاریخ انتشار 2004